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These notes are based on my lectures on discrete spectra given in Tambov in August 1996 (school
” Analysis on homogeneous spaces”)

Now spectra in various problems of noncommutative harmonic analysis are completly or partialy
evaluated. It is well-known that sometimes such spectra contain discrete increments. Quite often such
discrete increments are singular ("exotic”) unitary representations and it is very difficult to construct
these unitary representations by other way, see [Puk], [Nai], [Boy], [Ism], [Moll-3], [Str], [Far], [F-]].
[Sch], [Kobl], [Kob2], [RSW], [Tsu], [How], [Ada], [Li], [Pat], [BO]

It was observed in [Nerl], [Ols2], [Ols3], [NO], [Ner2] that very often discrete increments to spectra in
various problems of noncommutative harmonic analysis (decomposition of tensor products, decomposi-
tion of restrictions, decomposition of induced representation ) are related to some functional-theoretical
phenomena, namely to so-called "trace theorems ” (i.e theorems about existence of restrictions of dis-
continuous functions to submanifolds, for this type theorems see [RS],IX.3,IX.9 and references to this
sections, [Bar],chapter 5, [NR], [Rud], 11.2).

The simplest case of this phenomenon is the tensor product of two representations of complementary
series of SLy(R ).Recall the definition of representation Ty of the complementary series. The space H;
of the repesentation T, (where 0 < s < 1) is the space of functions on the circle z; = e'® provided with

the scalar product
2T 2w
1) fo(#2)dd1deo
< fi,fa> / / ]sm b1 — ¢2)/2l(1+s)/2

The representation 7Ty is defined by the formula

b
r(§ 1) 1) = L +al

The representation Ty, ® T, acts in the space H;_ ® M. of functions on two-dimensional torus
z; = €91z, = ¢'%2 equipped with the scalar product

o f1(61, ¢2) f2(¥1, ¥2)d@1ddad 1 di)s
< fi,fa> / / / / lsm WI)/2| 1+31)/2| sm(d)v _ 1/12)/22(1-#32)/2

The group SLy(R ) acts in this space by the formula
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If s1 + s2 > 1 then there exists well-defined operator R of restriction of a function f € H; @ H;_ to the
diagonal A : ¢; = ¢o. We emphasis that functions f € H; & M . are discontinuous and hence f have
no values in a individual point of the torus. Neverless the operator R of the restriction of a function f to
the diagonal is well defined . Observe that R is interwinning operator from 7, & Ty, to Ty, 44,—1. Hence
Ts,4+s,—1 1s a subrepresentation in T, ® T5,.

Existense of the embedding T, 4+5,-1 to Ty, ® T,, was obtained in [Puk] (see also [Nai]). The con-
struction with restriction to the diagonal was observed in {Nerl] (see also [NO] ).

Various consructions of the same type are contained in [NO],[Nerl}-[Ner2],[Ols3]. In [NO] we used
this approach for constructions of singular unitary representations of the groups U(p, ¢), O(p, ¢), Sp(p, ).
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These notes is some kind of addendum to the papers [NOJ,[Ner2]. The aim of these notes is to
formulate several open problems on discrete increments to spectra and trace theorems and to discuss a

relationship between some spectral problems.
I am grateful to G 1.Olshanskii for collaboration and I also thanks V.F.Molchanov, H.Schlichtkrull,

G.Zuckerman, B.Qrsted, M Flensted-Jensen, G.Olafsson, A.Dvorsky, A.G.Sergeev, R.S.Ismagilov,
R.Howe, V.M.Gichev, V.V.Lebedev for discussions, comments and references.
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1 Boundary values of holomorphic functions.

1.1. Let @ ¢ C " be a open domain, let 9 be its boundary, let O be the closure of . We say that € 1s
a regular circle domain if

a)forallz€Qand A€ C such that |A| < 1 we have Az € Q

b) for all z € 9 and A € C such that |A| < 1 we have Az € Q

Let K(z,u) bea reproducing kernel (see for instance [NO]) in Q satisfying the condition

B e Bl

K(e92,e%u) = K(z,u)

Let H be the hilbert space of holomorphic functions associated to this kernel
Theorem 1.1.(see [NO]) Let M C o be a compact subset. Let p be a measure supported on M. Let
a)K*(z,u) = lime~1-0 K (cz,cu) exist almost sure on M x M with respect to the measure fi X ph.
b)K* € LN(M x M, p X p) and lime—1-0 K(cz,cu) is dominated, t.c. there exists a function S(z,u) €
LY(M x M, x p) such that |K(z,u)| < S(z,u) almost sure on Mx M.
Then the operator of restriction of a function f € H on the set M is well-defined operator

H — L\(M. )

The following natural problem arises.

Question. Let € C" be a a open domain. Let K(z,u) be a reproducing kernel and let H be
the associated hilbert space. Let M be a submanifold in the Shilov boundary of . Find conditions for
existence of restriction operator from H to some functional hilbert space on M.

Remark. A case which is interesting for harmonic analysis is the following case . Let Q = G/K
be a homogeneous Cartan domain. Let Q be a subgroup in G and let M be a orbit of @ in the Shilov
boundary of Q. Then operator I of restriction to §)is a interwinning operator from H to some hilbert
space of funtions on M See discussion of such restrictions in [NOJ, [Ner2] and below sections 2 and 3

Following subsection show that Theorem 1.1 doesn’t cover all cases then a restriction operator exists.

1.2. Denote by B, the unit ball

ol < 1

in C 9. Let v(t) be a C'-curve in the §B? = S¥~1.
Theorem 1.2(see [NR],[Rud]) Let 4(t) satisfies the condition
vt Im < y(t),y'(t) ># 0 (1)
Then for each f € H®(BY) the nontangent limit f(z) as z — ~(t) exists almost sure on 7(t).
Denote by D' the space of all holomorphic functions of polynomial grouth in B?
feD <3N :sup ()1 - 1z)2)Y < o0

It is well known that each function f € D' has limit on the boundary in the sence of distributions (see
[RS],IX.3 for discussion of such type theorems and references).

Theorem 1.3.(sce [Ner2]) Lel 4(t) is C*-smooth curve in §BY satisfying the condition (1). Then
the operator R of restriction of holomorphic function to v(t) extends to a bounded operator from D' to

the space of distributions on 7(t).
Denote by P™ the polydisk |21] < 1,. o lzal < 1. Let T7 be the torus z = e'®1, ...,z = ¢fn . Let
+(T) = (6:1(t),-- -, én(t)) be a C®-curve in T such that

Vi ¢l (t) >0,...,¢n(t) >0
Denote by D' the space of holomorhic functions of polynomial grouth in P".
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Theorem 1.4.(see [Ner2]) Operator R of restriction of holomorphic function f on P™ to the curve
v(t) extends to the bounded operator from the space D' to the space of distributions on the curve v(t)

Let © C C Y be a open domain. Let M be a submanifold in the Shilov boundary of Q. Denote by 7T,
the tangent space to M in the point N € M. We identify Tr, with a linear submanifold in C ™. Denote
by Sy, the linear submanifold which consists of vectors

i-(v—-m)+m

where v € T.,,. Assume that for each point m € M there exists a open cone Cy, C T, with the vertex m
and e-neighbourhood O((m) of m such that

CrnNQ2D0(m)NCh

Conjecture.Each holomorphic function of polynimial grouth in Q has restriction to M in the sense

of distributions.
Theorems 1.3-1.4 are partial cases of this conjecture. It is also similiar to the standard facts on

limits of functions of polynomial grouth on the whole Shilov boundary mentioned above (see [RS],1X.3 ).
Neverless I couldn’t find this fact in the literature.

2 Positive defined kernels on riemann noncompact symmetric
spaces

2.1. Matrix balls B, ,. Let p <¢. Denote by B, ; the space of all complex p x ¢g-matrices z such that

||zIl < 1. The group U(p, q) consists of (p + q) x (p+ ¢)-matrices g = ( (; 3 ) satisfying the condition

(0 5)r=(e )

The group U(p, q) acts on By 4 by the transformations

2 29 = (a + z¢) (b + zd) (2]

The stabilizer of the point z = 0 consists of matrices having the form a 0 wherea € U(p),d € U(q)
0 d /

Hence B, , is the symmetric space
By = Ulp, 9)/(U(p) x U(g))

Constider the function
Ly(z,u) = |det(1 — zu™)|"%

where z,u € By 4.

Theorem 2.1. Lets=0,1,2,...,p—1 ors>p—1. Then the function L;(z,u) is a posttive defined
kernel on By 4.

(this theorem is a consequence of the theorem 2.2 below)

Consider the hilbert space defined by the positive defined kernel L,(z,u).. This space contains the
total system of vectors ¥, , z € B, 4 such that

<, Uy >= L;(z,u)
Woe associate to each vector h € H, the function fi on By 4 by the rule
fulz) =< b, >

It is easy to prove that f is a real analytic function on B, ;. We will identify the space H, with its image
in the space of real analytic functions on By ;.
The group U(p, q) acts in H, by the unitary operators

Ad)f(2) = f(z19)] det(a + zc)| 7%
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Problem Decompose the repersentation A,

We will name representations 75 by spherical kern-representations of the group U(p, q).

Some partial cases of this question were discussed in the end of 70-ies (See [Ber2],[Rep],[Gut], in
fact there was discussed only the case when s is large. In this case the most interesting phenomena
don’t appear). Then such problems were more or less forgotten. In last several years some this problem
attracted interest again(see [NO], [00], [0Z],[Djj]).

I would like to try to explain why this problem is interesting and also to discuss some approaches to
this problem.

2.2. Another formulation of the problem.

Theorem 2.2 (sece [Berl]) Let Let s = 0,1,2,...,p—1 ors > p— 1. Then the kernel

Ks(z,u) = det™" (1 ~ zu*)

15 posttive defined on B, ,.
Denote by V; the hilbert space of holomorphic functions on B,y defined by the kernel K,(z,u) (see
for instance [Berl], [NO]). The group U(p, q) acts in V, by the unitary operators

T, ( Z 3, ) = f(z[g])det_s(a+zc)

where 2091 is given by the formula (2).
Remark. If 5 is integer then T is a representation of the group U(p, ) itself. If s is not integer then

T 1s a representation of the universal covering group of U(p, g).
Denote by 7T the representation contragradient to T,. Consider the tensor product 7, ® Tr . This
representation acts in the space of holomorphic functions on By ¢ x By 4 by the operators

@o1) (8 5) = fenm) = FEL ot 207 @+ 2

The U(p, q)-invariant scalar product in the space of holomorphic functions on By 4 x By 4 is defined by
the reproducing kernel

M(z1, 22;u1,u9) = det7*(1 — zyu})det ™* (1 — z9uj)
Consider the operator
I: Vs &® Vs - Hs

defined by the formula
1f(z) = f(2,7)

Obviously I is a unitary operator interwining
T, ® T; — A,

Hence we can formulate our problem in the form:

Problem. Decompose the tensor product Ty ® T}

2.3.Orbits of the group U(p, q) on the Shilov boundary.

Denote by M, , the Shilov boundary of B, ;. Elements of M, 4 are matrices z satisfying the condition

z-z" =1

In the other words z is a matrix of a isometric embedding C? — 9. Hence My 4 1s complex Siiefel

manifold.
"The Shilov boundary of B, 4 x By 4 is M ¢ x M, , . The group U(p, ) has (p+1) orbits on Mp g x M, ,.
The unique invariant of a orbit is the number

a=rk(z—-7) (3)

- We denote by Z, the orbit corresponding to a given invariant a (1e. E4 is the set of all pairs z,u €
Mp,g x My, such that (3) is satisfied)

Orbit =g is compact, orbit =p is open. For all a the closure of Z, is Us<aZo-
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2.4, Restriction to U(p,¢)-orbits. Fix a orbit =, of U(p, q) in the Shilov boundary of B 4 x By
It can happens (and it realy happens) that for small s function f € Hy, = V, ® V; has well defined
restriction to the orbit Z. In this case the restriction operator is a interwinning operator from V; x V;
to some hilbert space of functions on Za.

It can also happened (and it realy happens) that for small s all first partial derivatives of function
feH, =V,®YV; have well defined restriction to the orbit Zg etc.(see discussion of this phenimenon in
[NOJ,section 7). ‘

Fix s. For each a = 0,1,...,p— 1 consder the maximal number 7, such that all partial derivatives of
functions f € V, ® V; have well-defined restrictions to Z. (this numbers aren’t knowa, but Theorem 1.1
give possibility to estimate them. I don’t know are such estimates strict or not).If restrictions of functions
feH,=V,®V, to =, don’t exist we suppose Ta = —1.

Remark. For large s restriction operators don’t exist, i.e. we have 7, = —1 for all a.

For each a consider some i = 1,---, 7. Denote by Q[c, Ta] the space of functions f € V; ® V; such
that all partial derivatives of f of orders < i equals zero on Eq.

We obtain a filtration

OCQ[P_LTP—I]CQ[P—lan—l_I]C ...CQPp-1,01C
CQ[p-—?,Tp_z]C..ACQ[p—Q,l]CQ[p—-Q,O]C... (4)
...CQ[O,TO]C‘..Q[O,I]CQ[O,O]C\G@VS

Remark . For large s this filtration is trivial, neverless for small s it is quite long.

Consider representations of U(p,q) in subquotients of this filtration. Obviously A, = T, ® T is
equivalent to the direct sum of the subquotients.

Remark. The representations of U(p, ¢) in the subquotients have simple interpretations. For instance
V,®V,/Q[0,0]is a subspace in the space of functions on the orbit Zg . The space Q[0, 1]/Q[0,0] a subspace
in space of sections of normal bundle to the orbit =g . The space Q[0,1]/Q{0,2] is a subspace in space of
sections of symmetric square of normal bundle etc., see discussion in NOJ]S 7.

Tt is natural to hope that spectrum in each subquotient is more or less »uniform”, i.e. orbit structure
give separation of quite complicated spectrum of A, to the different types (compaire with [GG]-project )

2.5. Large s. If s is large enough then the restriction operators don’t exist. In this case the
representation Ay is equivalent to standart representation of the group U(p,q)in L? on riemann symmetric
space U(p,q)/(U(p) x U(g)) see [Ber2],[Rep],[Gut],[00]. Sufficient (not nessessary) condition for this is
s >p+q— (e Ty is a element of Harish-Chandra discrete seri es).

2.6. Limit as s — oc. Concider the system of vectors ¥, € H,. Let x be a distribution in B, with
a compact support. Consider the vector O(x) € H, defined by the equality

O(x) = / det™*(1 — 2z%)x(2)¥.dzdz
BF»q

Consider a scalar product {-,-}s in the spase of distributions on B, 4 with compact support given by the
formula

det(1 — zz*)(det(1l —uu™)®
{x1,x2}s =< ©(x1), O(x2) >:/ / l et(l — =z J(det(L—wW) 1, oy vy (w)dzdEduda
By,q 7 Bpg det (1—-2‘(1*)

We can identify the space H, with the completion of the space of distributions with respect to scalar
produt {-,-}s. The group U(p, q) acts in this space of distributions by the formula

Bi(9)f(2) = f(=1)

(the formula doesn’t depend of s, neverless the scalar product and spectra of representation depend of s
essentially)
Denote by w(s) the integral
w(s) = / det’(1 — z2")
prq

Then for all continuous functions on By ; with compact support

im YO, 6}, = /B bu()0(2)d=dZ

s—4o0 w(s)
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It is natural to think that the himit of kern-representations as s — 400 is the canonical representation of
U(p,q) in the space L? on riemann symmetric space U(p, ¢)/(U(p) x U(q)).

2.7. Restriction to the compact orbit. The part of spectrum which corresponds to the compact
orbit = is purely discrete and it consists of quite exotic representations of U(p, ¢) and this is relatively
simple way for constructing singular unitary representations of U(p, ¢), see [NOJ.

2.8. Spherical kern-representations of other classical groups. All classical riemann noncom-
pact symmetric spaces G/K (up to centrum of G) can be realized as matrix balls (see [Ner3]). Namely the
space G/K is the space of matrices z over the field K =R ,C ,H (see below) satisfying the additional
condition (see below) such that ||z]] < 1.

Now we are enumerate symmetric spaces G/ K, fields and additional conditions.

1*. U(p,q)/(U(p) x U(q)) is the space of p x ¢ matrices over C .

2* . Sp(2n,R)/U(n) is the space of symmetric n x n-matrices over C .

3*. SO*(2n)/U(n) is the space of skew symmetric n x n- matrices over C .

4*. O(p,q)/(O(p) x O(q)) is the space of p x g-matrices over R .

5*. GL(n,R )/O(n) is the space of symmetric n X n-matrices over R .

6*. O(n,C)/O(n) is the space of skew-symmetric n x n-matrices over R'.

7%, GL(n,C )/U(n) is the space of hermitian n x n-matrices over C .

8. Sp(p, q)/(Sp(p) x Sp(q)) is the space of p x g-matrices over H .

9*. GL(n,H )/Sp(p, q) is the space of hermitian n x n-matrices over H .

10*. Sp(2n,C )/Sp(n) is the space of skew hermitian (i.e. z = —z") n x n-matrices over H .

In all cases enumerated above the group GG acts on the matrix ball G/K by fractional-linear transfor-
mations

PRI ) (a—}-zc)_l(b-{—zd) (5)

Now let us consider positive definite kernels on G/K having a form
Ly(z,u) = |det(1 — zu™)|72*

(conditions for positive-definiteness are different for different spaces) Consider the hilbert space defined
by the positive defined kernel L;(z,u). We identify this space with some space of real-analytic functions
on G/K by the same way as in 2.1 . The group & acts in H, by the unitary operators

As(9)](z) = f(1)] det(a+ z)[ 7%

We say A; is a spherical kern-representation of G.
2.9. Nonspherical kern-representations. Fix a matrix ball G/K and a finite dimensional euclid-
ian space . Denote by GL(Y) the group of invertible linear operators in Y. We say that a function

L:G/K xG/K — GL(Y)
is a matriz-valued positive definite kernelif the function

L((z,€); (u,m) =< K(z,u)é,m > 5 (2,6), (u,n) € G/K x Y

is a positive defined kernel on G/K x Y.

Let we have a matrix-valued positive defined kernel on G/K. Then there exist a hilbert space H and
amap ¥ :G/K x )Y — H such that

a) The map ¥ is linear on each fibre z x Y CG/K x V.

b) < ¥(z,8),¥(u,n) >p=< K(z,u)f,n >y

¢) The image of map ¥ is dence in H.

For each h € H we define a function f; : G/K — Y by the rule < f,§ >y=< h,¥(z,€) >p.
Consider a symumetric spaces having the form 27,3%,57,67,77,97,10*. Consider a finite dimensional
irreducible representation p of the group GL(n,K ) or of its universal covering. Assume that the function

L(z,u) = p(1 — zu”)

is a matrix valued positive definite kernel. Then we consider the associated hilbert space H, of real-
analytic functions G/K — Y and the unitary kern-representation of G in H, given by the formula

Ty(9)f(2) = pla + 2¢) f(z19) (6)
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Consider the cases 1*,4*,9*. Consider a finite-dimensional irreducible representation p = p; ® p2 of the
group GL(p,K ) x GL(g,K ) or of its universal covering. Assume that the function

Ly(z,u) = p1(1 — zu") @ p2(1 — u”2)

is a positive defined matrix-valued kernel on G/K. Then the group G acts in the associated space of
real-analytic functions on G/K by the formula

T,(9)f(2) = (pr(a + 2¢) ® pa(d = c2l)) £(z1)

Remark. Our arguments from subsections 2.5 are valid for general kern-representations.

2.10. Another description of kern-representations (see [00]). For G = Sp(2n,R ), U(p, q),
S0O*(2n) a kern representation is a tensor product of irreducible highest weight representation of G and
irreducible lowest weight representation of G.

In other cases a kern representation of G is a restriction of a highest weight representation of the
group G* to the symmetric subgroup G:

4%, G=0(p,q) G*=U(p,g) 5. G=GL(n,R) G =5p(2n,R)
6*. G=0(nC) G =S0*(2n) T G=GL(nC) G =U(nn)
8" G = Sp(p,q) G*=U(2p,29) 9* G=GL(n,H) G*=S0"(2n)
10* G=Sp(2n,C) G*=Sp(4n,R)

Remark. The cases 1* — 3* can be described by the same way . We have G* = G x G and the
embedding G — G* is given by the formula g — (g, g%) where 6 is the outer automorphism of G.

Remark. There are some additional possibilities related to highest weight representations of O(p, 2)
and two exeptional groups (see [0Q]).

2.11. Action of Olshanskii semigroup. (see [Olsl]) For each matrix ball G/K consider the set
of matrices ¢ = ( Ccl 3 ) such that the mapping (6) maps the matrix ball to itself. Obviously T is a
semigroup and the group G is the group of invertible elements of I'. The formula (6) defines representation
of semigroup I'. This representation is irreducible and all irreducible representations of I' can be obtaned
by this way(see[Ols1]). See [Ols1], [Ner3],[Ner4],appendix A, for the explicit desvription of semigroups I'.

Moreover kern-representations extends to representations of some categories(see[Ner3],[Nerd],appendix
A).
I don’t know any applications of these phenomena to harmonic analysis of kern-representations of
groups.

2.12. Bibliographical comments.

a) Let 7 be a highest weight representation of G = Sp(2n,R ), SO*(2n),U(p,q), ... and S be a lowest
weight representation of G. Assume that T, S be elements of Harish-Chandra discrete series. Then T@J5 is
equivalent to a representation of G induced from irreducible representation of K (see [Ber2],[Rep],[Gut]).

b) Restriction of a spherical highest weight representation of G* to the symmetric subgroup G (i.e
spherical kern-representation, see notations of 2.10 ) is equivalent to canonical representation of G in
L*(G/K),see [OQ]. :

¢) Discrete spectra associated to the compact orbit in Shilov boundary were investigated in [NO]
for the case G = O(p,q). Analogical results are valid for G = U(p.q), Sp(p, q)([O1s2],INO],7.12.). One
method of separation of discrete spectrum is discussed in [Nerl], [NOJ,7.1-7.8. T think that the restriction
operator to the compact orbit doesn’t exist for G # U(p, q), Sp(p, 1), O(p, q).

d) The spectrum for spherical kern-representation of U(2,2) was obtained in [0Z2] . For 1 <
s < 3/2 the spectrum consist of two different pieces. One of pieces coincides with the spectrum of
L2(U(2,2)/(U(2) x U(2)). Another piece is a integral of notrivial representations. It is natural to think
(it is not proved) that this piece of spectrum is associated to noncompact U(2,2)-orbit in the Shilov
boundary of By s X By 2.

If it is so it is the unique known case when spectrum associated to noncompact orbit is observed. It is
natural to think that such spectra exist in various spectral problems(not only for kern-representations).

e)Spectrum of spherical kern-representations of U(p, 1) is obtained in [Dy].

f) Plancherel formula for tensor product of highest weight and lowest weight representations of
SL(2,R ), see [Mol4]. I don’t know analogical results for other kern-representations.

g) Nonspherical kern-representations have discrete spectrum which is not associated to compact orbit.
Some possibilities to observe it are contained in the following two sections. A way to observe Harish-
Chandra discrete series increments using trace theorems is proposed in [Ner2].
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h) Let p be the same as in 2.10. Let p,(y) = det™*(y)p(y). Then limit of T,, as s — oo is the
representation of G induced from finite dimensional representation of K (i.e the representation in sections

of vector bundle on G/ K). The theory of such representations is more or less equivalent to Harish-Chandra
theory of L%(G).

3 Dual pairs

3.1. Spectrum of dual pairs. Consider the harmonic representation Won (= Weil representation =
Segal-Shale-Weil representation = Friedrichs-Segal-Berezin-Shale-Weil representation = oscilator repre-
sentation ) of the group Sp(2n,R ) (see [KV],[Nerd]) for discussion of this representation).

Consider the following subgroups in the simplectic group it (noncompact Howe dual pairs):

Sp(2k(p +¢),R) D Sp(2k,R ) x O(p, q)
Sp(2(k+ D@ +q),R)DU(k, 1) x U(p,q)
Sp(4k(p+ ), R ) D SO*(2k) x Sp(p, q)

Let us restrict Wy to these subgroups and then let us restrict to

O(p, ), Sp(2k,R ), U(k,1),U(p,q), SO*(2k), Sp(p, q)

It was proved in [Ada],[Li] that the spectra of these restrictions have discrete increments. This construc-
tion is one of standard way to obtain singular unitary representations of groups U(p, q), O(p, q), Sp(p, ¢).
Proposition 3.1. (see [NO]) Each representation of G = O(p, q), Sp(2k,R ), U(k,1),U(p, q), SO*(2k),
Sp(p, q) which occurs in spectra of dual pair discretly (resp.weakly) occurs in spectra of some kern-
representation discretly (resp.weakly).
This proposition is more or less obvious. Concider for instance the case Sp(2k,R ) x O(p,q). The
restriction of Wyg(,44) to the subgroup

Sp(2k,R ) C Sp(2k,R ) x O(p, q) C Sp(2k(p+q),R)

1s equivalent to the representation
® * -~
WEP ® (Wi )®? (M)
First tensor factor is a direct sum of highest weight representations and second tensor factor is a direct

sum of lowest weight representations . Hence (6) is a direct sum of kern-representations.
Consider the following subgroups in Sp(2k(p + ¢),R ):

Sp(2k(p+q),R) D O(p,q) x Sp(2k,R) D O(p.q)
I N U N

Sp(2k(p+q),R) D U(pg x Uk) D Ulpq)

The restriction of Wag(p44) to U(p, q) is a direct sum of highest weight representations and hence the
restriction of Wak(p44) to O(p, ) is a direct sum of kern-representations.
3.2. Restriction to orbits. We realize the group Sp(2N,R ) as the group of (N + N) x (N + N)-
o

matrices with complex coeflicients having the form g = ( T3 and satisfying the condition

oLo1)=(s V)

Denote by Cn the space of complex symmetric N x N-matrices z . The group Sp(2n,R ) acts on Cy
by the fractional linear transformations and we have Cy = Sp(2N,R )/U(N). Consider a reproducing

kernel
K(z,u)= det—llz(l — zu")

on Cn. Denote by H the associated hilbert space.. The group Sp(2N,R ) acts in H by the unitary
operators

Wi(g) = f(z¥)det " /%(® + 2T)

The representation W;,’, is one of two irreducible components of the representation Wy .
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Again we have question about restrictions of holomorphic functions to O(p, ¢) x Sp(2k, R )-orbits
in the Shilov boundary of Cy. It seems that a orbit structure of Shilov boundary in this case is very
complicated. In any case there exists a orbit

F = Sp(2k, R )/U(n) x O(p,¢)/Q

where Q is stabilizer of maximal isotropic subspace in pseudoeuclidean space R P4 1 can show, that
operator of restriction to orbit F exists and this observation give a way to observe a part of discrete
spectra for dual pair. It is interesting to calculate this part of spectrum.

Another question which seems interesting to me: is it possible to obtain by such way some handble
realizations of some Harish-Chandra discrete series representations?

4 Space L? on Stiefel manifolds

4.1. Stiefel manifolds. We name by Stiefel manifolds the following 10 types of homogeneous spaces
G/Q:
1°.  O(q)/Op-ta—s) 2. Ulp,g/Ulp-tq—3)
3°.  Sp(p,q)/Sp(p—t,q—s) 4° Sp(2n,R)/Sp(2(n —1),R)
5°. Sp(2n,C)/Sp(2(n—1),C) 6° O(n,C)/O(n—-1t,C)
7°.  S0O*(2n)/SO*(2(n —1t))

8° — 10°. The spaces of all linear embeddings
IRn_t—*]Rn Cn—t_*cﬂ Hn—t—PHH

In the last 3 cases the group G is GL(n,R ),GL(n,C), GL(n,H ) respectively and Q is the group of
matrices having the form
1, =*
(%)

Remark The Stiefel manifold Sp(2n,R )/Sp(2(n — t),R ) is the space of isometric embeddings of
the space R ' equipped with a nondegenerate skew symmetric bilinear form to the space R " equipped
with nondegenerated skew symmetric bilinear form. Other Stiefel manifolds 1° — 7° have the analogical

description.

4.2. Additional symmetries. Consider the case G/Q = Sp(2n,R )/Spf2(n — t),R). Then
the group Sp(2t,R ) acts by the obvious way on the space of symplectic-isometric embeddings R LN
R ?"(sinse it acts on the space R 2t} . Hence the manifold Sp(2n, R )/Sp(2(n —t),R ) is a Sp(2t,R ) x

Sp(2n, R )-homogeneous space:
Sp(2n,R)/Sp(2(n —t),R ) = (Sp(2t, R ) x Sp(2n, R ))/(Sp(2t,R ) x Sp(2(n —t),R))

Analogical additional group of symmetries exists in all cases 1° — 10°. These additional symmetries are
useful since the spaces L2(G/Q) have G-spectrum of infinite multiplicity.

4.3. Spectra of L? on Stiefel manifolds. A few is known about spectral decomposition of
L2(G/Q). Neverless it is known that this problem is interesting. See [Sch] and [Kob] for Flensted-Jensen
type constructions of discrete spectra in L? on

0(p,q)/O(p-1,9) Up,0)/Up—r,9) Sp(p,a)/Sp(p—r,9)

For the case r = 1 the Plancerel formula is obtained in [0Z1]. Some consrtructions for discrete increments
to spectra of

L (U(p, q)/(U(p —t,a —t) x U(p) x U(a))) C LA(U(p, 0)/(U(p) x U(0)))

are contained in [RSW].

The cases G/Q where G = GL(n,R),GL(n,C),GL(n,H ) are very simple.

Proposition 4.1. Each representation of G which is contained in spectra L2(G/Q) discretly(resp.
weakly) is contained in specrtrum of some kern-representation of G discretly-(resp. weakly).
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Proof. We use arguments from [How],[NO]. Concider for instance the case G — Sp(2n,R). The
representation
W2n ® W;n

of 5p(2n, R ) is equivalent to representation of Sp(2n, R ) in L?(R ?"). Hence the representation
(Wan © W5, )22 = W @ (W5,)82

is equivalent to representation of Sp(2n,R) in L? on the space Matog o, of all 2k x 2n-matrices. A
generic orbit of Sp(2n, R ) in Matsy a2y, is a Stiefel manifold Sp(2n,R )/Sp(2(n — k),R).

Remark. For other groups G Proposition 6.1 can be proved by the same arguments. The basic
observation is

W,,l ~LYR"
2 GL(n,R) (R")

(see real model of harmonic representation in [KV]).
4.3. Some pseudoriemann symmetric spaces. By the obvious way we have

L*(O(p,9)/(O(p) x O(p - r, q)); C LZgO(p, 7)/O(p—r,q)
L2(U(p,q)/(U(r)x U(p~1,9))) C L2(U(p,q)/U(p ~r,4q)
L*(Sp(p, q)/(Sp(r) x Sp(p—7,9))) C L*(Sp(p,q)/Sp(p — 1,q))

and spectra of these spaces are contained in spectra of Stifel manifolds. I don’t know such embeddings
of spectra for other pseudoriemannian symmetric spaces.
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